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This paper discusses two infinite length models (planar and cylindrical) for ciliary 
propulsion of microscopic organisms. Through the concept of an extensible 
envelope (instantaneous surface covering the numerous cilia) over the organism, 
we consider a small amplitude analysis for the velocity of propulsion. A com- 
parison of the velocities of propulsion for the infinite models reveals that they are 
just over twice that obtained for the finite spherical model (Blake 1971). This 
indicates that planeness is more important than finiteness, as the solution for 
typical micro-organisms (e.g. disk-shaped) should occur somewhere between 
these two models. The maximum velocity of propulsion obtained is one quarter 
of the wave velocity; that inferred for Opalina, the organism modelled, is nearly 
one fifth of the wave velocity. Associated shapes of the surface and paths of 
movement of the tips of the cilia are illustrated. 

1. Introduction 
Few studies from the hydrodynamical point of view have been made on ciliary 

motion. In  this paper, we consider two infinite length models for ciliary propulsion 
and compare them with the finite length model given in a previous paper (Blake 
1971). Comparisons are also made with the actual velocities of the ciliated 
organisms. 

Many small microscopic organisms are propelled by high concentrations of cilia 
on the surface of the organism. The cilia, are located in rows along and across the 
organism, while the organism is propelled in the opposite direction to that of the 
effective beat of the cilia. The movements of adjacent cilia are slightly out of 
phase (metachronism), and the direction in which they are out of phase deter- 
mines the name of the type of metachronism exhibited by the organism. This 
metachronism viewed from above (or side on), appears as a wave passing over the 
organism. For these models we take an extensible ‘envelope’ over the tips of the 
numerous undulating cilia, thus replacing the individuality of the cilia by a pro- 
gressive waving envelope. This approximation is perhaps only valid in one type 
of metachronism, that of the symplectic type, which occurs when the cilia beat 
in the same direction as that of the wave. We would expect, and in fact find, the 
cilia to be bunched close together in this type of metachronism throughout the 
complete cycle of the beat. The no-slip condition is imposed on the extensible 
envelope, with no allowance being made for blowing or sucking, which may 
occur in some organisms. 
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As the organisms are very small, and velocities (both wave and propulsive) 
small also, the Reynolds numbers are extremely low, thus enabling us to use the 
creeping flow equations of motion. Taylor (1951) was the first to show that 
propulsion of a microscopic organism can occur when the viscous stresses are 
dominant. 

Through the use of axisymmetric potential theory (Weinstein 1953) we formu- 
late two problems together, (i) the two-dimensional waving sheet, and (ii) axi- 
symmetric waving cylinder, with the waving bodies propelling themselves 
through the infinite liquid domain (see figure 1). Burns & Parkes (1967) con- 
sidered the flow in the interior of the ‘tubes’ (i.e. general term used for both 
(i) and (ii)), whereas in this problem the flow field outside the ‘tubes’ is of interest. 
However, in this paper we will also consider longitudinal movements as well as 
the transverse oscillations considered by Burns & Parkes. Otherwise, the actual 
mathematics is obtained by simply replacing the modified Bessel functions of the 
first kind In(z), by those of the third kind K,(z) (Watson 1966). Taylor (1952) 
considered an infinite waving cylinder as a model for a flagellum, but the flow 
field in his model is not axisymmetric. The first model has previously been dis- 
cussed by Taylor (1951), Reynolds (1965) and Tuck (1968). Taylor’s model was 
an inextensible model of a transverse wave a t  zero Reynolds number. His 
inextensibility condition allows longitudinal movements to the second order; in 
fact a fixed point on the sheet moves through a figure-of-eight path in each period 
of oscillation. Reynolds introduces first-order movements in the longitudinal 
direction as well as the transverse by allowing the sinusoidal surface to strain. 
Tuck modified and simplified some of the earlier results, and considered both 
longitudinal and transverse oscillations separately. However, in the present 
paper, longitudinal and transverse oscillations acting together are assumed in the 
analysis throughout, and hence the envelope surface will be quite different from 
the sinusoidal shape employed in previous papers. The expressions for the 
velocity of propulsion and rate of working are obtained in more generality than 
previous approaches. 

The strict validity of these models for ciliary propulsion a t  first sight is some- 
what doubtful, for we are trying to model finite (small) length organisms by 
infinite models. The use of (i) and (ii) as models is justified because ciliated 
organisms tend to be elongated or flat, e.g. Paramecium or Opalina (so that a high 
ratio of surface area to volume can occur and hence a large number of cilia to 
propel the organism). Sheets of ciliated surface that are effectively infinite also 
occur on the ciliated epithelia of multi-cellular animals. These models may then 
be an appropriate approximation if we suppose that end effects of the organism 
are negligible, and that in the middle of the organism the waves passing over it 
are similar to those over an infinite sheet. In  any case we may hope to learn 
something of the influence of finite size by comparing the present infinite models 
with the finite spherical model (Blake 1971). 

In this type of problem it is important for us to define the frame of reference 
in which the calculations wiU be carried out. We choose the reference frame to 
be one where the waves are stationary, which in our notation will be represented 
by the x co-ordinate. This co-ordinate is defined by z = kx + d, which in the 
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x co-ordinate system (fixed in the moving organism) gives for wave-like functions 
a velocity of wave propagation in the negative x direction of magnitude c = r/k. 
In  the z co-ordinate system the velocity of the fluid at  infinity will be c - U, where 
U is the velocity of propulsion of the sheet. 

+Y 
(ZO> Yo) 

- - -  

Surface 
of ciliated 
organism 
\ 
\ 

FIGURE 1. Diagram illustrates envelope over cilia. Co-ordinates (q,, yo) represent envelope, 
(2, a) mean position. Velocity a t  infinity, u = c-  U .  

2. Equations of motion 
The equations of motion for this problem are those for creeping flow, 

Qp = /1.V2q, V . q  = 0, (1) 

where p is the pressure, q the velocity vector, and ,u the viscosity. We take small 
perturbations about a mean tube (y = ~f: a) and then the problem may be reduced 
to solving the above equations, with the boundary conditions being velocities 
given on the mean tube (as distinct from the envelope). These velocities in terms 
of the perturbations are obtained later by a Taylor series expansion about the 
mean tube, as we know the velocities at  the envelope surface due to the no-slip 
condition. This approach was used by Lighthill (1952) in his spherical model for 
propulsion at low Reynolds number. An alternative approach to satisfy the 
no-slip condition at the envelope surface is to expand the solution for the velo- 
cities in terms of the small perturbations and then equating this to the no-slip 
condition. From this we obtain an infinite set of linear equations which may be 
truncated to the required order of accuracy (see Burns & Parkes 1967). Both 
methods give the same solution, but the former approach appears to be easier 
for the order of magnitude to which we are working. 

Using axisymmetric potential theory, the equation for the stream function $ 
can be written in terms of 

where rn = 0 , l  depending on whether we are considering the two-dimensional 
tube or the axisymmetric cylinder, respectively. 

14-2 
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In  both cases a Fourier series expansion for $ ( x ,  y) is taken, and for convenience 

a non-dimensional wave-number is used. 
m 

so that $,n(y) satisfies the following ordinary differential equation: 

where 
d2 m d 

Dmn=-----n2 ( m = O , l ; n =  1 ,2  ,... ). 
dY2 Y dY 

The boundary conditions for the z and y directional velocities on y = a and in 
a frame of reference moving with the crests are 

(7 )  1 m 
u(z, a) = A,  + x (A,  COB nx + B, sin nx), 

v(z, a) = 2 (C, cos n z  + D, sin nz), 

n= 1 
00 

n = l  

which are the velocities a t  the mean radius of the tube. In  the two-dimensional 
case the boundary conditions also need to be satisfied at y = - a. However, the 
upper (y >, a) and the lower (y < -a) half planes reduce to the same problem, so 
me need only consider the upper half plane. We can also translate the tube wall, 
in the two-dimensional case, so that it coincides with the z axis thus making the 
analysis more compact. 

The velocity components in terms of the stream function are 

-lap 1 a$ 
Y" a Y  ' ym ax 

v = ~- (m = 0,l) .  u = -- 

A representative solution for the two-dimensional waving plate a t  the translated 
origin is 

W 

whereas for the axisymmetric case 
m 

@(z,  Y) = P0y2+ X [(.nYKl(ny) +PnY2Ko(fiY)) C O S ~ Z  
n = l  

+ (ynyKl(ny) + 6ny2Ko(ny)) sinnzI* (10) 

From the above definitions of velocity in terms of the stream function, and the 
boundary conditions in terms of the surface coefficients on y = a, we then obtain 
for this co-ordinate system the following solutions for the z and y directional 
velocities. For (i), the velocities a t  (z,  y) are, 

u = c -  U +  x e-n~[(A,-n(An+D,)y)cosnx+(Bn-n(B,-C,)y)sinnz], m 

n = l  
(11) 

8 = C e-n~[(D,+n(A,+Dn)y)sinnz+(Cn-n(B,-C,)y)cosnz], (12) 
00 

n=l 
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and for (ii) 
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" 1  
u = c - U + 2 ~ [cos nz{K,(ny) [2K,A, + na(K,D, +KO&)] 

n=l #(n) 

- nyK,(ny) [K,B, - K,C,I} + sin fix {K,(ny) [2K0D, - na(K,D, + K O 4 I  

+nYKo(nY) [&A, +KoD,1}17 (14) 

where #(n) = 2K,(na) K,(na) + na[K:(na) - K:(na)] (15) 
and KO and K,  are Bessel functions of the third kind of zero and first order, of 
argument nu, unless otherwise specified. The velocity of propulsion of the 
organism is (c = for non-dimensional k), 

u = c-A,.  (16) 
From the creeping flow equations we can calculate the pressure, and hence from 
this the surface stresses exerted by the organism on the fluid. The solution for 
the pressure in case (i) is 

m 

p = 2p ne-", [ (A,  + D,) sin nz - (B, - C,) cos nx] (17) 
11.=1 

and in case (ii) 

The stresses exerted by the body on the fluid are given by, 

crij = pJij - 2peig, (19) 
where eij is the rate of strain tensor. They may be calculated from equations (1 l), 
(12), (13), ( la),  (17) and (18) for the velocities and pressures in the two cases 
considered. However, this requires tedious algebra, so the results will not be 
included here. We shall, however, include the rate of working per unit area of the 
sheet, which is defined by the following integral: 

where So is a unit area of the mean tube. 
To do this, the integral we will consider for a first approximation is 

From this definition the rate of working per unit area in the two-dimensional 
case becomes (for non-dimensional k), 
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whereas in the axisymmetric flow model we obtain 

It is difficult to define an efficiency parameter for these models. Tuck (1968) 
suggested taking the velocity of propulsion a t  fixed P ,  rather than fixed ampli- 
tude. However, we will define an efficiency parameter (i.e. a non-dimensional 
number) by 

= UT/P,  (24) 

where U is the velocity of propulsion and P is the mean rate of working. T, a 
characteristic thrusting force per unit area is more difficult to define, since the 
total force exerted by the organism on the fluid is zero. In practice we take this 
as the simplest expression possible with the required dimensions ML-IT-2, and 
this is proportional to p U  divided by the length of the metachronal wave. It may 
be noted, however, that a propulsive force, proportional topU/h, can be extracted 
from the equation for the surface stresses exerted on the fluid by the organism. 
There also exists a retarding force of equal magnitude, but opposite in sign to the 
propulsive force, thus giving a total force equal to zero. This point was illustrated 
in Taylor’s (1951) paper for an infinite waving sheet, where the pressure force was 
balanced by the tangential stress exerted over the waving surface of the organism. 
However the efficiency is incurred, it is valuable in helping us to compare dif- 
ferent modes of motion exhibited by the ciliated organisms. 

3. Surface of organism 

is defined by 
The oscillating surface envelope of the organism in the x co-ordinate system 

N 

n = l  

N 

n=l 

x,, = z + e  (ansinn(kx+at)-bb,cosn(kx+crt)), 

yo = a+e C ( ~ ~ s i n n ( k x + ~ t ) - d ~ c o s n ( k x + u t ) ) ,  

where E is suitably small and the coefficients an, b,, c, and d, in the Fourier series 
expansions are O(1). The above definitions of the surface envelope correspond to 
a progressive wave in the negative x direction with velocity magnitude c = a / k ,  
wavelength 2nlk and frequency a/2n. 

In  the co-ordinate system used in the earlier section and with a non-dimensional 
wave-number (thus c = (T) the surface is defined by 

N \ 

I 
J 

zo = z + E C (a, sin nx - b, cos nz), 

yo = u + E C (en sin nz - d, cos nz). 

n=l 

N 

n=l 
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The no-slip condition for this extensible sheet gives the following velocities at  
the surface envelope 

N 

,=I 
~ ( z , ,  yo) = u + EU x n(a, cos nz + b, sinnz), 

v(zo, go) = e a  C n(c, cos nz + d, sin nz). 
N 

n=l 

To obtain the previously defined surface velocity coefficients in (7), we take 
a Taylor series expansion for the velocity components about (z ,  a) ,  which on 
rearrangement appears as 

To obtain the order of accuracy we require, an iterative technique is applied, 
which proceeds as follows. 

For the first approximation (i.e. to O(s) )  we need only equate q(l)(z, a) to the 
no-slip conditions given in (27). This gives the following first-order approxima- 
tions for A,, B,, C, and D,. 

A,  = U, 

A ,  = enran, B, = enab,, C, = mvc,, D, = end ,  (n = 1,2, ..., N ) . )  

It is apparent from these first-order solutions that the velocity of propulsion U 
is zero. To obtain net propulsion it is necessary to go to the second-order approxi- 
mation, a conclusion reached by Taylor (1951). 

To obtain the second-order approximations O(eZ), we substitute the first-order 
approximations in the k = 1 terms on the right-hand side of (28). To calculate the 
velocity of propulsion the only second-order term we require is A,, so we need 
only look at u, the velocity components in the z direction. Thus for the two- 
dimensional tube we obtain, 

N 

n=l  
u(z,a) = U+EU C n(a,cosnz+b,sinnz) 

N N 

[n=l n=l 
+ c (a, sin nz - b, cos nz) 2 n2(a, sin nz - b, cos nz) 

1 N N 

T k = l  n = l  
- (c, sin nz - d, cos nz) x n2{(c, - 2b,) sin nz - (2a, + d,) cos nz} , (30) 

which gives for the velocity of propulsion in dimensional form 

N 

n=l 
U = $e2ak n2[c",+~-a2,-b2,+2(andn-c,bn)]. 
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In  the case of the infinite cylinder, 
N 

m = l  
u(z, a) = B + ev C n(a, cos nz + b, sin nz) 

N N 
(a, sin nz - b, cosnx) 2 n2(a, sin nz - b, cos nz) 

n=l 

N n2 + x (c, sin n z  - d, cos nz) C - {( 2a, K; + nad,(K: - Ki) )  cos n z  
n=l n=l $(n) 

+ ( 2 6 3 2 ,  + nac,(Ki - K:)) sin nz} . (32 )  1 
The constant term in dimensional form gives for the velocity of propulsion, 

U = *s20-k C. n2 --{(K~-K~)na(c~+d2,)+2K~(a,d,-bncn))-a2,-b2, . (33 )  

It is worth noting that the velocity of propulsion in ( 3 3 )  is dependent on the tube 
radius as well as the amplitude parameters. This has the effect of making the 
y-directional amplitude parameter dependent on the tube radius for this small 
amplitude expansion to be valid. 

We may calculate A,, B,, C, and D, to higher order. In  the general case we 
find that, 

1 N 1 
n=l 

(34 )  i U = -AOj€j  (j = 2 , 4 ,  ...), 

( j , n =  1 , 2 , 3  ,... ), i A ,  = A ,  Q, 
C, = Cni d, 

B, = Bni d, 
D, = Dni d, 

where A,+ Bni, Cnj and Dnj are functions of a,, b,, c, and d,. To obtain solutions 
to order M ,  it is necessary for us to takep = M -  1 in (as),  and to have first-order 
substitutions in the Ic = M -  1 terms down to M- 1 order approximations for 
the coefficients in the k = 1 terms. This then assures accuracy to order sM in (34 ) .  
This technique is especially simple and easy to calculate to low orders of approxi- 
mation, but becomes tedious for higher-order approximations for the general 
cases considered so far. However for special cases (next section) we have worked 
to fourth order for the velocities of propulsion. 

4. Applications to ciliary propulsion 
The beat of a single cilium can be separated into two distinct phases, one phase 

being the effective stroke (when the cilium beats in the opposite direction to 
propulsion of the body) and the other phase the recovery stroke. The classical 
case of an effective beat is when the cilium beats nearly rigidly in its effective 
stroke, but retreats limply during the recovery stroke. Generally the recovery 
stroke takes far longer than the effective beat. For this model of ciliary propulsion 
to be valid we need the cilium to beat in the same direction as the wave is pro- 
gressing (symplectic metachronism), as in this case the cilia are close together 
throughout the whole beat. Opalina exhibits this type of metachronism and 
its beat is illustrated in figure 2 ( b ) .  Its effective and recovery strokes vary 
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considerably from the classical model illustrated in figure 2 (a),  but we can still 
distinguish the two strokes. The path traced out by the tips of the cilia in Opalina 
is approximately elliptical in shape. 

.3---- Wave c- Wave 

Propulsion 
__t 

FIUURE 2. (a)  Classical beat of a cilium; showing effective and 
recovery strokes (Paramecium). (b)  Beat of Oparlim. 

In this section the path of a tip of a cilium will be matched onto the movement 
of each point of the waving sheet. Sleigh (1968) has obtained numerous data on 
the movement of tips of cilia, and approximations will be made using these 
plotted paths. The models we will use can be represented by (in the x co-ordinate 
system) x,, = II: + , ~ C O S  (kx + crt) + y sin (kx + vt), 

yo = a + b sin (kx  + d). (35) 

This definition for the surface envelope of the tube gives for each labelled point 
a path through which it traverses in each period of oscillation (in much the same 
way as a fluid particle in ;t water wave). Normally it is found that the axis of the 
locus of a tip of a cilium is inclined to the body axis, this being the reason for 
the inclusion of y in (35). 

For the surface defined by (35), the following velocities (second order) and 
rates of working (first order) are obtained for cases (i) and (ii): 

U = + c r k ( b 2 + 2 b ~ - , 8 2 - ~ 2 ) ,  For (i) 

with rate of working 
and for (ii) 

P = pd%(b2+,82+y2); 
(36) 
(37) 

and (39) 

It is found that as the radius of the axisymmetric cylinder increases, the velocity 
of propulsion tends to that of the infinite flat sheet. A graph comparing 
U/&(bk)2  for the two models as the radius a increases is shown in figure 3. We 
will now discuss the two cases separately, and compare them with results 
obtained previously. 

Case (i) 
From (36) we note several results obtained previously, namely by Taylor (1951) 
and Tuck (1968). Taylor considered the inextensible model with b #= 0, ,9 and 
y zero, and obtains for a velocity of propulsion, 

U = +rkb2 = +(kb)', 
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From these observations we note that transverse and longitudinal oscillations 
tend to propel the sheet in opposite directions. However if we combine the two 
cases we find that 

The f i s t  two terms in (40) correspond to the result obtained by Reynolds (1965), 
for straining of the surface, as, to first-order Reynolds 6 corresponds to J3 in this 
analysis. This particular case defines for each labelled point (x, a)  a path which is 
that of an ellipse, with axes of length b and ,8 in the y and x directions respectively. 
For the case of the circular path (p = b, optimal velocity for J3 and b both less than 
a constant determined later), it  is found that the direction of propulsion relative 
to the wave is dependent on whether the tip moves in an anticlockwise or clock- 
wise direction, the direction of propulsion being opposite to the direction of 
movement of the tip on the upper part of the path (for y a) .  Thus, if the tip 
moves in an anticlockwise direction, U = c(kb)2, whereas in the clockwise direc- 
tion U = - c(kb)2. From this solution (40) it is noticed that organisms which have 
predominantly transverse motions (e.g. Opalina) are propelled in an opposite 
direction to the metachronal wave, whereas predominant longitudinal move- 
ments (e.g. Paramecium) tend to propel the organism in the same direction as 

U = 45k(b'+ 2pb -p2) .  (40) 

Two-dimensional waving sheet 
------c-------------------- 

- 

(E: I I 
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the wave. However in this latter case, we do not wish to suggest that this analysis 
is a correct model for this organism, but it is worth noting the apparent connex- 
ion with observations between the path of movement of the tip and the type of 
metachronism. 

Before any comparisons can be made, it is necessary to know the validity of 
the preceding analysis, and, as this is a small-amplitude perturbation technique, 
the limit of the size of E or in these specific cases the limitations in magnitude on 
/3, y and b .  The fourth-order approximation to  (40) is, 

U = Qak[(b2+ 2pb-p2- y2) 

-kz(b4+ +b3p-2b2/32+9b/33- 2b2y2+9b/3~2)] .  

I I 
10 20 

a 

FIQURE 4. Graph illustrating the dependence of maximum value of amplitude 
parameter bk on the radius a, for axisymmetric cylinder model. 

If we take the criterion of Taylor (1951), allowing an error of 25%, this then 
allows us to take (for equal displacements in both normal and tangential 
directions) 

I bL = Q, 
k(pZ+y2)$ = for 1/31 > i). 

For the case of Opalina this upper limit coincides with that experienced by the 
organism, so an approximation can be made. 

Case (ii) 
In  this model it is found that the magnitude of the amplitude parameter b in the 
y direction is dependent on the tube radius. To show this dependence, the 
simplest example of pure transverse motion is taken. A graph showing the change 
of b with a, allowing for a 25% variation from the second-order velocity of 
propulsion is shown in figure 4. Again it is shown that b tends to Q; that expected 
in the infinite flat sheet model. The amplitude of longitudinal movements, how- 
ever is not dependent on the tube radius. 

From the definition of the efficiency parameter (24), we obtain the following 
formulation in the case of the infinite waving sheet with U defined in (36), P in 
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(37) and T = 2,ukU. If we include k with b, /3 and y to make them non- 
dimensional, we obtain 

(43) 
1 (b2+2b/3-/32- y2)2 

2 b2+BZ+y2 
v = -  

As the infinite cylinder tends to the infinite sheet as the radius a increases, we 
need only take this efficiency into consideration. 

The maximum efficiency occurs when y = 0 andb = 0-6b (or b = - 0*6/3), which 
for b = 4 (or /3 = +) gives an efficiency 7 = 31 %. In  other words minimum power 
output is found when the tips describe an ellipse with axis ratio of 0.6. The 
maximum velocity occurs when b = 1/31, y = 0, and has an efficiency of 25%. 

It should be emphasized that these efficiencies are very much dependent on the 
definition in (24). Previous calcuIated efficiencies have been taken in comparison 
with inert bodies, so therefore these efficiencies quoted are far higher than those, 
for example, in Blake (1971) for the spherical model. 

5. Comparisons with the spherical model 
A comparison of the velocities of propulsion for the infinite models of this paper 

and the axisymmetric spherical model (Blake 1971) are discussed in this section. 
As the infinite cylinder results tend to that for the flat sheet as the radius 
increases, we need only take into consideration those of the flat sheet. 

Recalling the notation for the spherical body, and considering only radial 
(transverse) oscillations we define the surface by 

R = a[l  +ey(N)(cosc+t[P,~,(cos6)-P,(c0~0)] 

+sin crt[P'-,(cosO) -PN-l(cosB)]}]. (44) 

P,(cos 8) are Legendre polynomials, and y ( N )  is chosen such that the maximum 
perturbation of the radius is ae (i.e. amplitude of wave). The velocity of propulsion 
for this model is 

I U = aae2y2(N) F ( N ) ,  

where (45) 

For this model the relevant parameter is EN,  which we may equate to Eb of the 
infinite models. If we define the wave velocity c = acr/N = c+/k for the two models, 
we have the following velocities of propulsion: 

U = $c(kb)2; for the infinite waving sheet model, 

y2(N)P(N)  C ( E N ) ~ ;  for the axisymmetric sphere. and U =  N 

Thus for a comparison we need only look at y 2 ( N )  F ( N ) / N  to see how it compares 
with 8. 

As N increases it can be shown that the velocity of propulsion in the spherical 
case is 40-45y0 that of the infinite flat sheet. This is an encouraging result as 
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(s) 
FIGURE 5. Graphs showing surface envelope shapes, and particle paths for varying P, y 
and b. The corresponding efficiency q and velocity of propulsion U of organism in com- 
parison to wave speed c are given. 

P Y b U l C  t 
(4 0-5 0 0.5 0.25 25 % 
(b) 0-25 0.25 0.5 0.19 19 % 
(4 - 0.5 0 0.25 - 0.22 30 % 
( d )  - 0.4 0.3 0.5 - 0.2 16 % 
(4 0.3 0.4 0.5 0.15 9 %  
(f 1 
(g3 

0 0 0.5 0.125 12.5 yo 
0-5 0 0 - 0.125 12.5 yo 



222 J .  R. Blake 

a spherical organism is not an ideal shape for ciliary propulsion at low Reynolds 
number, because cilia near the front and rear are not beating in a direction 
favourable for propulsion. Previously it was remarked that ciliated organisms 
tend to be elongated or flat, so for these bodies a solution between that of the 
finite sphere and infinite sheet would be anticipated. It also may help to dispel 
some of the natural doubts as to whether the infinite oscillating sheet is a poor 
model for propulsion at  low Reynolds number. 

6. Models and examples for Opalina 
In this section graphs showing the shape of the progressive wave, the path of 

each point of the sheet, velocities of propulsion and efficiency are shown. A model 
as close as possible to that of Opalina gives a velocity of propulsion U = 0*19c, 
where c is the wave velocity. The velocities obtained are comparable to those of 
Opalina, whose velocity of propulsion is O( 100pmlsec) and wave speed 
c = 200-400pm/sec. It can be seen that by introducing the longitudinal oscilla- 
tions the resulting shape of the wave is considerably distorted from that of the 
sinusoidal wave used by previous authors. In  conclusion, this approach appears 
to be a reasonable approximation to ciliary propulsion for a symplectic meta- 
chronal wave, allowing comparison between the numerous modes. 
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